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Abstract: Diffuse correlation spectroscopy faces challenges concerning the contamination of
cutaneous and deep tissue blood flow. We propose a long short-term memory network to directly
quantify the flow rates of shallow and deep-layer tissues. By exploiting the different contributions
of shallow and deep-layer flow rates to auto-correlation functions, we accurately predict the
shallow and deep-layer flow rates (RMSE= 0.047 and 0.034 ml/min/100 g of simulated tissue,
R2 = 0.99 and 0.99, respectively) in a two-layer flow phantom experiment. This approach is useful
in evaluating the blood flow responses of active muscles, where both cutaneous and deep-muscle
blood flow increase with exercise.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Diffuse correlation spectroscopy (DCS) is an optical measurement technique used to quantify
tissue blood flow, and it has shown great potential in both medical [1–5] and sports physiology
[6–12] applications due to its non-invasive and cost-effective nature. The blood flow index (BFI)
is used to estimate the tissue blood flow, a parameter representing the mean square displacement
of red blood cells per second. Previous studies have demonstrated a strong correlation between
BFI and the tissue blood flow rate as measured using perfusion magnetic resonance imaging [13]
and bolus tracking methods [3,14].

Traditionally, DCS quantifies BFI values by fitting the photon-intensity autocorrelation function,
which is observed at the target tissue surface, to theoretical model equations [15]. However, the
commonly used model assumes the tissue to be a homogeneous, semi-infinite medium. While
this model effectively provides reasonable information concerning tissue blood flow in practical
DCS measurements, anatomical tissue structures and hemodynamic responses across different
tissue layers may alter the measured morphology of autocorrelation functions and lead to the
misinterpretation of the blood flow dynamics.

One potential example of a complex blood flow response caused by tissue heterogeneity
is active muscle measurements. During exercise, blood flow to both active muscles and skin
increases to meet the oxygen demand of active muscles and to dissipate the generated heat. As
photons pass through both the shallow cutaneous and deep muscle layers before being captured
by the detector optode, the detected light may reflect blood flow information from both tissue
layers. Moreover, the BFI values obtained from the surface of an exercising limb have been
reported to be significantly affected by the exercise-induced enhancement of cutaneous blood
flow [11,12], which may prevent the accurate quantification of muscle blood flow. Although local
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cooling or pharmacological blockades are promising methods for evaluating muscle blood flow
while minimizing the effect of cutaneous blood flow on BFI values [10–12], these techniques
may not be suitable for some patient/elderly populations and repetitive measurement settings.
The complex contributions of different tissue layers may not be accurately captured by simple
model equations that assume a homogeneous blood flow pattern. More advanced strategies are
required to evaluate multi-layer blood flow [16–19].

Previous studies have shown the usefulness of deep learning frameworks in DCS research,
such as denoising the autocorrelation function and directly calculating the BFI. Zhang et al.
[20] proposed a deep learning recurrent neural network (RNN) regression model for denoising
autocorrelation functions. Feng et al. [21] estimated relative cerebral blood flow using a
combined convolutional neural network (CNN) and RNN model. Li et al. [22,23] proposed
a deep neural network with a long short-term memory (LSTM) architecture for calculating
blood flow and oxygen saturation from both phantom and in vivo models. Poon et al. [24]
used MobileNetV2, a lightweight CNN architecture, to quantify blood-flow-related parameters
and assess blood flow changes during an arm cuff ischemia in a human participant. However,
none of these models have considered the anatomical composition of the target tissue, such
as the cutaneous and muscle layers, which can have different hemodynamic responses due to
microvascular density, temperature, and exercise conditions. Therefore, the current study aimed
to investigate the potential of using deep-learning-based methods for distinguishing the blood
flow rates of shallow and deep layers from autocorrelation functions obtained at the tissue surface.

The remainder of the paper is organized as follows. First, we describe our two-layer phantom
flow model, which was used to collect DCS data under the independent control of flow rates in
shallow and deep layers. Next, we detail the DCS instrumentation and experimental protocols
used to collect the autocorrelation function from the flow phantom. We then provide a procedure
for utilizing a deep neural network with LSTM that is employed to predict flow rates in both
shallow and deep layers from the autocorrelation function. We present and discuss the results
considering comparisons of the autocorrelation function with varied flow rates in the two layers,
their correspondence to the BFI values, and the prediction accuracy of flow rates by the proposed
LSTM network-based method. Finally, we conclude by summarizing the main contributions of
this study and providing suggestions for future research.

2. Methods

2.1. Two-layer phantom flow model

We fabricated a flow phantom model (Fig. 1(ab)) that can independently modulate the flow rate
of the two-layered compartments used in this experiment. The phantom was made of acryl
resin (AR-M2; Keyence) with dimensions of 100× 50× 50.5 mm in length, width, and height,
respectively, with the longest side serving as the flow direction. It was manufactured using a 3D
printer and filled with glass beads (diameter: 2.5 to 3.5 mm; BZ-2, AXEL, Japan) without gaps.
This flow model has been verified to approximate photon propagation in vivo, where photon
scattering from moving scatterers has been observed to exhibit Brownian motion [25]. A Mylar
sheet (thickness: 0.05 mm) separated the upper and lower layers, which had depths of 5.5 and 35
mm, respectively. The depth of the upper layer was determined according to the mean depth
of the medial head of the gastrocnemius muscle in 25 young adults measured by an ultrasonic
diagnostic imaging apparatus (MUS-P0301-L75, ITO Physiotherapy & Rehabilitation, Japan).
The surface of the upper layer was also sealed with the same Mylar sheet to which we attached
the DCS probes. Each phantom layer had an inlet connected to a programmable syringe pump
(FP-2200, Melquest, Japan) and an outlet fixed to a plastic container above the mass meter. We
used the mass meter to weigh the outgoing fluid every 30 s to measure the exact flow rates of the
upper and lower layers. As the upper and lower layers simulate the shallow, cutaneous tissue and
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the deep, muscle tissue layers of the living body, hereinafter we refer to them as the shallow and
deep layers, respectively.

To simulate blood flow, we used a mixture of 20 µl of India ink (BD3-18; Kuretake, Japan)
and 40 ml of a 20% intralipid solution (Otsuka Pharmaceutical, Japan), which was distilled in 1 L
of tap water and used as the fluid in the phantom chamber. The absorption coefficient (µa) and
reduced scattering coefficient (µ’s) of the phantom filled with this fluid were measured using the
time-resolved spectroscopy system (TRS-20; Hamamatsu Photonics, Japan) at wavelengths of
760 and 800 nm with a source-detector separation of 3 cm. The µa and µ’s values at a wavelength
of 785 nm were estimated as the average of the coefficients measured at the above wavelengths
and were 0.56 and 4.81 cm−1, respectively.

2.2. DCS instrumentation

We used a 785-nm, long-coherent continuous-wave laser (DL-785-100-S, CrystaLaser, NV,
USA) and a four-channel single-photon counting module (SPCM-C, Excelitas, MA, USA) to
construct our DCS system [6,10,26–28]. The near-infrared light emitted was transmitted through
a multimode fiber (FT400EMT, Thorlabs Japan Inc. Japan) and directed towards the surface of
the phantom. The diffused light was detected by a single-mode fiber (S630-HP, Thorlabs, Japan)
positioned at distances of 1, 2, and 3 cm from the source fiber. The collected light intensity
was measured using a 32-bit counter board (USB-6341, National instruments Co., Japan). The
sampling rate of the photon intensity was 1 MHz when the flow rate of either layer was faster
than 30 ml/min/100 g of tissue and 400 kHz otherwise. The 1 MHz sampling rate was used to
capture the faster decay of the autocorrelation function and the 400 kHz sampling rate was used
to improve the signal-to-noise ratio of the light intensity data. The autocorrelation function
calculated from the light intensity data sampled at 400 kHz was up-sampled to 1 MHz for further
analysis using the deep learning model.

2.3. Protocols and experiments

We conducted a phantom experiment where we collected 1340 autocorrelation functions g2(r, τ)
of the normalized light intensity (Eq. (1)) with varying combinations of flow rates for both shallow
and deep layers. g2(r, τ) was computed every second from the detected light intensity I(r, t),
where r, t, τ, and brackets< > represent the position, time, delay from t, and time-averages,
respectively.

g2(r, τ) =
⟨I(r, t)∗I(r, t + τ)⟩

⟨I(r, t)⟩2 (1)

The 134 combinations of the shallow and deep layer flow rates were set across rates from 0 to
70 ml/min/100 g of simulated tissue (0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 20, 25, 30, 35, 40,
45, 50, 55, 60, 65, and 70 ml/min/100 g of simulated tissue; Fig. 1(c)). These flow rates were
chosen to simulate the physiological ranges of cutaneous and muscle blood flow during a resting
state and exercise [29–36]. We maintained each combination of shallow- and deep-layer flow
rates for 1 min and averaged the measurements taken during the 1-min-interval to determine the
single trial g2(r, τ) data. We then paired each data point with the measured flow rates of the
shallow and deep layers by weighing the outlet liquid volumes. For each combination of shallow-
and deep-layer flow rates, we measured the g2(r, τ) data for 10 times.

We calculated the normalized electric field autocorrelation function g1(r, τ) to the 10 ms
delay time to clearly visualize the changes in their decay slopes, which are equivalent to the BFI
(Eq. (2)). We derived g1(r, τ) from g2(r, τ) using the following Siegert relation normalized to
the intensity of light [15]:

g2(r, τ) = 1 + β |g1(r, τ)|2 (2)

where β is derived from the analytical model fit (Eq. (3) in Section 2.4.1) of each observation.
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Fig. 1. (a) Overview, (b) schematic representation, and (c) tested flow rate combinations
of the flow phantom system. (a) Two programmable syringe pumps (1) eject the intralipid
solutions filled in the syringes (2). A three-way stopcock (3) is placed between the syringe
and phantom (4) to prevent backflow. The DCS probes of source-detector separations of
1, 2, and 3 cm (5) were attached to the top of the phantom. The outflow was guided to the
plastic containers (6) placed on the mass meter (7) to weigh the outlet liquid volume of each
layer of the phantom. (b) The flow rates of two layers were independently controlled by two
syringe pumps. (c) Scatter plot displaying the 134 combinations of shallow and deep layer
flow rates (FR) set at the syringe pumps.
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2.4. Data analysis

We used two different methods to analyze the obtained data: the conventional model-fit method
(section 2.4.1) and the proposed deep-learning-based method (section 2.4.2). The delay of the
autocorrelation functions was varied from 0 to 500 µs for the following analyses.

2.4.1. BFI estimation

The BFI is a relative measure of the average blood flow speed within a tissue volume that
emitted light has traveled through. BFI values were obtained using a fast Fourier transform-based
software autocorrelator from the time-based variation of the light intensity [15,25]. To determine
the BFI, g2(r, τ) was fitted to the theoretical autocorrelation function G2(r, τ) derived from
the Green’s function solution of the diffusion correlation equation, in which case the model was
considered as a point light source on the semi-infinite plate medium [15,25], as shown in Eq. (3):

G2(r, τ) = 1 + β

|︁|︁|︁ 3µ′
s

4π

(︂
e−kDr1

r1
− e−kDr2

r2

)︂|︁|︁|︁2
I(r, t)2

(3)

where kD =
√︂

3µ′sµa + 6µ′2s k2
0αDBτ, r1 =

√︂
ρ2 + z2

0, r2 =

√︂
ρ2 + (z0 + 2zb)

2, z0 = µ
′−1
s , and

zb = 2(1 − Reff )/3µ′s(1 + Reff ). Here, β is a constant, α is the fraction of photon scattering events
of moving scatterers in the total amount of scatterers, k0 is the wavenumber of the light in a
medium, DB is the effective diffusion coefficient of the scatterers, Reff is the effective reflection
coefficient, and ρ is the source-detector separation. We defined αDB as the BFI according to the
Brownian motion characteristics of the moving scatterers within the flow phantom using glass
beads [25].

For each source-detector separation condition (1, 2, and 3 cm), we determined the BFI value
from the g2(r, τ) data measured under 1340 combinations of shallow and deep-layer flow rates.
Because the flow rates of the shallow and deep layers have varying impacts on the calculated BFI
values detected at different source-detector separation distances, we conducted a linear regression
analysis to explore the relationship between the detected BFI value and the flow rates of the
shallow and deep layers for each condition of source-detector separation. We determined the
coefficients ci (i = 1, 2, 3) of the following linear relationship between the BFI and the flow
rates of the shallow (FRshallow) and deep (FRdeep) layers using the least squares method:

BFI = c1 · FRshallow + c2 · FRdeep + c3 (4)

We evaluated the coefficients of determination (R2 values) as an index of the goodness of fit of
the model.

2.4.2. Shallow and deep-layer flow rate estimation using an LSTM network

The g2(r, τ) dataset consists of 1340 trials, each of which has 3× 501 data points (3 source-
detector separations× 501 delay time points). Therefore, the total dataset size is 4020× 501. We
employed a 90-10 split to partition the dataset, with randomly selected 90% of the data used
for training and the remaining 10% used for testing. Since there were 10 observations each for
134 combinations of shallow and deep layer flow rates, we randomly selected nine of them for
training and the remaining one for testing for each combination of flow rate settings. Therefore,
the training data includes 1206 trials with a size of 3618× 501, while the test data includes 134
trials with a size of 402× 501.

LSTM is a type of RNN architecture designed to handle sequential data by capturing long-
term dependencies. Unlike traditional RNNs, LSTM introduces a memory cell that can store
information over extended periods. It can selectively remember or forget past information while
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retaining information relevant to the current task. This selective memory mechanism makes
LSTM well-suited for sequential data and has been shown to achieve state-of-the-art performance
on a wide range of sequential data tasks, including the quantification of BFI from g2(r, τ) [22].

The proposed LSTM architecture used in this study is illustrated in Fig. 2. The input to the
model consists of the measured g2(r, τ) data at three different source-detector separations, which
are set as three 1× 501 vectors for each trial. Before being included in the model, the g2(r, τ)
variables are normalized using z-scores. Each 1× 501 segment is then divided into three sections
that represent the prior, middle, and post periods of the autocorrelation function, resulting in
three 1D signals of size 1× 167. These signals are fed sequentially to two LSTM hidden layers,
each containing 512 LSTM units. Finally, a fully connected layer of size 1× 2 uses the softmax
classifier to generate the predicted flow rate values. The output of the model is a 1× 2 vector
that represents the predicted blood flow rates for the shallow and deep layers. To capture the
detailed temporal features specific to the flow rates of shallow and deep layers, we made technical
refinements to the method used in a previous study [22]. Specifically, we prolonged the length
of the autocorrelation function and its segmentation, which are subjected to the LSTM layers.
The single autocorrelation function is divided into three segments to utilize all the information
of the autocorrelation function while reducing the computational complexity. Furthermore, we
increased the number of LSTM units in each LSTM layer.

Fig. 2. Proposed LSTM model structure

We also examined the detection of flow rates for the shallow and deep layers with input
data consisting of the measured g2(r, τ) data from a single source-detector separation, as both
the shallow and deep layers have different effects on the time-decay patterns of g2(r, τ) even
when the predicted BFI value is almost the same (see Section 3.2 for a detailed description).
In this scenario, each trial is represented by a single 1× 501 vector. While the structure of the
model remains constant, training and evaluation are performed separately for each individual
source-detector separation.

To further assess the robustness of the model, we performed an additional validation analysis
in which the model was tested on flow rate combinations that were never part of the training
data. In this analysis, we used the g2(r, τ) data obtained at a source-detector separation of 1 cm
and randomly selected 5, 10, 20, 30, and 50% of the flow rate combinations out of the total 134
combinations. The measured g2(r, τ) data corresponding to these selected flow rates were used
exclusively for validation, and the model was trained with the other g2(r, τ) data.

Table 1 shows all the parameters used for the proposed LSTM design in this study. Our model
consists of two hidden LSTM layers, each with 512 LSTM memory units. The mean squared
error (MSE) loss function was used as the loss function during the training phase, and adaptive
moment estimation (Adam) was used as the optimizer. Initially, the learning rate was set at
1× 10−4. The batch size and epoch number were set to 501 and 200, respectively. We also
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applied a dropout rate of 0.1 to avoid overfitting. The model was developed in Python using
Pytorch and executed on an Nvidia K80 GPU with 12 GB GPU memory and a GPU memory
clock of 0.82 GHz.

Table 1. Parameters of the proposed LSTM model

Parameters Specified Values

Input size 1× 167

LSTM hidden layer number 2

LSTM unit in each layer 512

Loss Function MSE

Learning rate 0.0001

Optimizer Adam

Batch size 501

Epoch 200

Output size 1× 2

We used the root mean squared error (RMSE; Eqs. (5) and (6)), mean absolute error (MAE;
Eq. (7)), and their percentages (RMSE% and MAE%; Eqs. (8) and (9), respectively) to evaluate
the prediction performances of the flow rates and compare our results with prior research.

MSE =
∑︁N

i=1 (FRmeas − FRpred)
2

N
(5)

RMSE =
√

MSE (6)

MAE =
∑︁N

i=1 |FRmeas − FRpred |

N
(7)

RMSE% =
RMSE

1
N
∑︁N

i=1 FRmeas
× 100 (8)

MAE% =
MAE

1
N
∑︁N

i=1 FRmeas
× 100 (9)

Here, N represents the total number of samples in the test data, and FRmeas and FRpred represent
the true flow rate measured by the outflow of the flow phantom and the predicted rate calculated
by our model, respectively.

Additionally, we calculated the square of Pearson correlation coefficient (R2 value) between
the measured and predicted flow rates. To compare the accuracy of deep tissue blood flow
detection between the machine-learning-based approach and the semi-infinite BFI approach,
we also calculated the R2 value between the deep layer flow rates and BFI values obtained at
source-detector separations of 2 and 3 cm.

2.4.3. Monte Carlo simulation based robustness evaluation to changes in optical and anatomical
parameters

We conducted an additional simulation-based investigation to assess the robustness of the proposed
model to variations in anatomical structures and optical properties, considering the potential
application of this method for in vivo measurements of biological tissues. This experiment
employed a Monte Carlo based photon propagation simulation of a two-layer physics-based
model [37]. We utilized Monte Carlo eXtreme (MCX) software for the photon propagation
simulation [38].
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We trained the deep-learning-based model using 250 autocorrelation functions derived from
25 combinations of flow rates in the shallow and deep layers. These combinations include
all possible permutations of 0, 10, 20, 40, and 60 ml/min/100 g of simulated tissue, with 10
observations obtained for each combination. Since the precise relationship between the flow
rates and αDB values in each layer remains unknown, we defined αDB = 1 × 10−6 mm2/s as
equivalent to 1 ml/min/100 g of simulated tissue in this simulation. The 90% of simulated data
were used for training, while the remaining 10% was employed to verify the prediction accuracy
of the trained model.

The test dataset was generated under fixed flow rates of (shallow, deep)= (10, 20) ml/min/100 g
of simulated tissue. For each set of the following seven conditions, ten simulations were
conducted: (1) original optical and anatomical conditions, (2) 10% larger and (3) 10% smaller
absorption coefficient conditions in the deep layer, (4) 10% larger and (5) 10% smaller reduced
scattering coefficient conditions in the deep layer, and (6) 1 mm thicker and (7) 1 mm thinner
shallow layer depth conditions. The depth of shallow layer was remained at its original value of
5.5 mm in conditions (1)-(5), and the optical parameters were kept at their original values in
conditions (6) and (7). Using the trained model, the flow rates in the shallow and deep layers
were estimated and the mean relative change ratio of the predicted flow rates to those obtained in
condition (1) was evaluated.

3. Results

3.1. Autocorrelation function characteristics for different shallow and deep-layer flow
rates measured at different DCS source-detector separations

The observed photon count rates per second were 3.57× 106 ± 3.90× 103, 2.90× 105 ± 437,
and 2.42× 104 ± 40 (mean± standard error) at source-detector separations of 1, 2, and 3 cm,
respectively. Figures 3 and 4 show the effect of different flow rates in the shallow and deep layers
on the autocorrelation function g1(r, τ), measured under two constant flow rate conditions for
the deep and shallow layers, respectively, at various DCS source-detector separations.

The slopes of g1(r, τ) exhibited clear differentiation across flow rates in the shallow layer,
regardless of the source-detector separation, under the condition of a modest flow rate in the
deep layer (10 ml/min/100 g of simulated tissue; Figs. 3(a) to 3(c)). However, when the flow
rate of the deep layer was increased to 60 ml/min/100 g of simulated tissue, the slopes of the
g1(r, τ) generally increased regardless of the flow rate in the shallow layer (Figs. 3(d) to 3(f)).
Furthermore, the differentiation in the g1(r, τ) slopes among the varied flow rates in the shallow
layer became less pronounced, particularly for the channels with long source-detector separations
(Fig. 3(f)).

When the flow rates of the deep layer were varied under the constant and moderate flow rate
of the shallow layer (5 ml/min/100 g of simulated tissue; Figs. 4(a) to 4(c)), the differentiation
in the slopes of the g1(r, τ) functions became more apparent in channels with source-detector
separations of 2 and 3 cm compared to the 1 cm channel separation. This relationship remained
consistent even when the flow rate in the shallow layer was increased (Figs. 4(d) to 4(f)), although
the differentiation in slopes across different flow rates in the deep layer became smaller (Figs. 4(e)
and 4(f)).

3.2. Effect of shallow and deep tissue flow rates on the estimated BFI values

In this section, we examined the impact of flow rate in the shallow and deep layers on the estimated
BFI values with different source-detector separations. Figure 5 shows the relationships between
the BFI values and flow rates of the shallow and deep layers. We found that the following linear
relationships exist between the BFI values and flow rates at any condition of source-detector
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Fig. 3. Changes in g1(r, τ) slopes with varied shallow-layer flow rates under a fixed
deep-layer flow rate. The deep-layer flow rate was fixed to 10 and 60 ml/min/100 g of
simulated tissue in (a)-(c) and (d)-(f), respectively. The source-detector separation was 1 cm
for (a) and (d), 2 cm for (b) and (e), and 3 cm for (c) and (f). SDS: source-detector separation.

separation.
BFISD 1 cm = 0.804 · FRshallow + 0.113 · FRdeep + 3.300 (10)

BFISD 2 cm = 0.969 · FRshallow + 0.373 · FRdeep + 4.949 (11)

BFISD 3 cm = 1.359 · FRshallow + 0.624 · FRdeep + 6.988 (12)

The R2 values for the linear approximation were 0.947, 0.930, and 0.914 for the source-detector
separations of 1, 2, and 3 cm, respectively.

The determined linear relationship between the BFI values and flow rates of the shallow and
deep layers suggests that different combinations of shallow and deep flow rates could result in
the same BFI value. The red dots shown in Figs. 5(a) to 5(c) represent two data points with
comparable BFI values at the corresponding source-detector separation condition, although these
BFI values were derived from different combinations of flow rates in the shallow and deep layers.
Figures 5(d) to 5(f) show the superposition of g1(r, τ) obtained at the source-detector separation
for the selected data points. Although g1(r, τ) produced nearly identical BFI values for the
different flow rates in the shallow and deep layers; these data points did not overlap exactly at any
source-detector separation.
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Fig. 4. Changes in g1(r, τ) slopes with varied deep-layer flow rates under a fixed shallow-
layer flow rate. The shallow-layer flow rate was fixed to 5 and 20 ml/min/100 g of simulated
tissue in (a)-(c) and (d)-(f), respectively. The source-detector separation was 1 cm for (a)
and (d), 2 cm for (b) and (e), and 3 cm for (c) and (f). SDS: source-detector separation.

3.3. Prediction accuracy of the shallow and deep flow rates

Figure 6 illustrates the predicted flow rates of 134 test datasets by the LSTM model superimposed
on the measured flow rates, which were determined using g2(r, τ) at a source-detector separation
of 2 cm. Generally, the predicted and measured flow rates showed a good agreement regardless of
the flow rates within the range used in the current study. Interestingly, the prediction accuracies
were comparable when either all three or only one of the g2(r, τ) systems that were measured
simultaneously at the three different source-detector separations were used to predict the flow
rates (Table 2). The square of Pearson’s correlation coefficients between the measured and
predicted flow rates were more than 0.99 in both the shallow and deep layers, regardless of the use
of three or one g2(r, τ) system for prediction. The R2 values between the BFI and the measured
deep layer flow rates were 0.74 and 0.82 for inter-probe intervals of 2 and 3 cm, respectively,
demonstrating the excellent performance of machine-learning based prediction of deep tissue
blood flow over the semi-infinite BFI-based approach.

The prediction performances are summarized in Table 2 with comparisons to the results of
previous studies that applied deep learning to predict blood flow rate using the DCS method
[20–24,39]. The comparison suggests that our proposed system performs better than all previous
studies in all evaluation criteria. The robustness of the model was further confirmed in the
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Fig. 5. Linear relationship between the BFI and flow rate, and examples of g1(r, τ) showing
equivalent BFI values that emerged from different combinations of shallow and deep flow
rates. FR: flow rate, SDS: source-detector separation.

Fig. 6. Correlations between the measured and predicted flow rates in 134 test datasets
for the autocorrelation function g2(r, τ) measured at a source-detector separation of 2 cm.
These autocorrelation functions were never used to develop a classifier. (a) Comparisons of
the shallow-layer flow rates; (b) comparisons of the deep-layer flow rates; (c) correlation of
the measured and predicted flow rates in both layers. FR: flow rate.
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Table 2. Prediction performance summary of the proposed and previously
developed deep-learning-based DCS blood flow estimation methods using phantom

modelsa

Author Model Output Data size RMSE/RMSE% MAE/MAE% R2 value

Zhang et al.
[20]

RNN,
regression

model

BFI NA 2.22/NA NA/NA NA

Zhang et al.
[39]

Support
vector

regression

BFI NA 2.33/NA NA/NA NA

Li et al. [22] LSTM BFI 30000× 64 NA/3.3% NA/2.18% 0.95

Proposed
model

LSTM

FR 4020× 501

Shallow layer Shallow layer Shallow layer

0.072/0.32% 0.058/0.26% 0.99

Deep layer Deep layer Deep layer

0.067/0.41% 0.049/0.31% 0.99

FR

1340× 501
Shallow layer Shallow layer Shallow layer

0.044/0.20% 0.029/0.27% 0.99

Deep layer Deep layer Deep layer

SD= 1 cm
0.044/0.13% 0.033/0.21% 0.99

FR

1340× 501
Shallow layer Shallow layer Shallow layer

0.047/0.21% 0.036/0.21% 0.99

Deep layer Deep layer Deep layer

SD= 2 cm
0.034/0.16% 0.026/0.16% 0.99

FR

1340× 501
Shallow layer Shallow layer Shallow Layer

0.096/0.43% 0.068/0.36% 0.99

SD= 3 cm Deep layer Deep layer Deep layer

0.058/0.30% 0.041/0.26% 0.99

aBFI: blood flow index, FR: flow rate, NA: not available, SD: source-detector separation.

additional validation analysis in which the shallow and deep layer flow rates of g2(r, τ) data
can be accurately estimated even though the corresponding flow rate combinations were not
included in the training dataset (Table 3). The RMSE and MAE increased approximately fourfold
when the target flow rate combinations were not included in the training dataset. However, the
error value was still less than 0.2 ml/min/100 g of simulated tissue and the results maintained
an excellent correlation between the measured and predicted flow rates, which is acceptable for
practical measurement of active muscle blood flow [29–36]. Overall, these results indicate that
our proposed system can continuously predict and accurately monitor blood flow rate.

3.4. Robustness evaluation to changes in optical and anatomical parameters

The prediction performances of the deep-learning-based model that was trained with the simulated
autocorrelation function dataset are summarized in Table 4. Although the number of training
datasets was smaller than those collected in the physical phantom experiment, the proposed
model showed sufficient prediction performance of flow rates in both layers (Table 4).

The prediction results showed that the changes in optical or anatomical parameters affected the
predicted flow rates as expected, with more pronounced effects particularly in the shallow layer
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Table 3. Changes in prediction performance of the proposed model with reduced flow rate
combinations in training dataa

Random
90-10 split
(Table 2)

5% of FR
combination

reduction

10% of FR
combination

reduction

20% of FR
combination

reduction

30% of FR
combination

reduction

50% of FR
combination

reduction

RMSE
0.044/ 0.105/ 0.157/ 0.163/ 0.175/ 0.183/

0.044 0.071 0.103 0.121 0.144 0.135

MAE
0.029/ 0.061/ 0.124/ 0.131/ 0.137/ 0.142/

0.033 0.054 0.085 0.091 0.101 0.099

R2 value
0.99/ 0.99/ 0.99/ 0.99/ 0.99/ 0.99/

0.99 0.99 0.99 0.99 0.99 0.99

aFR: flow rate. First and second rows in each cell correspond to performance measures determined with shallow and
deep layer flow rates, respectively. All performance measures were derived from autocorrelation functions measured at
1 cm source-detector separation.

Table 4. Prediction performance summary of the
proposed deep-learning-based DCS blood flow
estimation method trained with autocorrelation
functions derived from two-layer slab model of

Monte Carlo based simulation.

Shallow layer Deep layer

RMSE 0.18 0.22

MAE 0.15 0.18

R2 0.99 0.99

(Fig. 7). However, the absolute changes were less than 3% of the flow rate, suggesting a relatively
small impact when considering the dynamic range of blood flow changes typically observed in
active muscles [29–36].

Fig. 7. Relative change in the predicted flow rates in the shallow (blue) and deep (red)
layers obtained from simulated autocorrelation functions with slightly modified optical and
anatomical parameters. µa+ and – represent conditions with 10% increased and decreased
absorption coefficient in the deep layer, µ’s + and – represent conditions with 10% increased
and decreased reduced scattering coefficient in the deep layer, and Top+ and – represent 1
mm thicker and thinner depth of the shallow layer, respectively.
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4. Discussion

The objective of the current study was twofold. First, we used a two-layer flow phantom to
investigate how changes in flow rate in the shallow and deep layers affected the morphology of
g1(r, τ) and the derived BFI values. Our results showed that the effects of flow rate variations
on the g1(r, τ) and BFI values differed depending on the source-detector separation, which
reflects the nature of continuous-wave DCS measurements that include the effect of photon
displacements at any depth on the optical pathlength. Second, we aimed to predict the flow
rates of the shallow and deep layers using machine learning techniques based on the different
impacts of shallow and deep-layer flow rates on g2(r, τ). Our approach showed promising results,
demonstrating excellent agreement between the predicted and measured flow rates. Therefore, a
deep-learning-based blood flow estimation method could be a useful tool for determining the
blood flow information of cutaneous and muscle tissues in DCS measurements.

The comparison of the g1(r, τ) results obtained under various flow rates in the shallow layer
while with a constant flow rate in the deep layer demonstrates that the slopes of g1(r, τ) and
the corresponding BFI values are affected by changes in the shallow-layer flow rate, especially
when the deep layer flow rate is slow. In physiological measurements of muscle or cerebral blood
flow using DCS, changes in cutaneous blood flow must be carefully monitored or controlled as
they significantly affect BFI values [11,12]. This is especially important in muscle blood flow
measurements during exercise when the increase in muscle blood flow further causes the local
warming of tissue to increase cutaneous blood flow. The contribution of cutaneous and muscle
blood flow increments to the increased BFI values must be precisely separated to prevent the
overestimation of exercise-related muscle blood flow changes.

The effectiveness of longer source-detector separations in capturing changes in deep layer
flow rates was observed in the comparisons of the g1(r, τ) and BFI values when varying the
deep-layer flow rates under a constant shallow-layer flow rate. The slopes of g1(r, τ) showed good
separation depending on the deep-layer flow rate at 2- and 3-cm source-detector separations when
the shallow-layer flow rate was constant and slow (5 ml/min/100 g of simulated tissue), while the
g1(r, τ) results mostly overlapped at a source-detector separation of 1 cm, regardless of the flow
rates in the deep layer. These phenomena are attributed to the fact that the DCS probe settings
with small source-detector separations mostly capture photons that have traveled through shallow
layers, while those with large separations could capture photons that have traveled through both
shallow and deep layers, supporting the previously reported relationship between measurable
depth and source-detector separation in DCS measurements [40–42]. However, the resolution of
the deep-layer flow rates in the autocorrelation functions was interfered with if the shallow layer
had faster flow rates, the effect of which is more severe in the shorter source-detector separation
conditions.

The estimated BFI values showed a good linear relationship with the flow rates of the shallow
and deep layers, whose slope increased along with the length of source-detector separation. These
results suggest the better sensitivity of DCS measurement at longer source-detector separations in
quantifying flow rate. The linear relationship also suggests that the same BFI value could apply
to various combinations of shallow and deep-layer flow rates. Therefore, we further investigated
the detailed morphology of g1(r, τ) which emerged with nearly identical BFI values. Our
observations indicate that the flow rates in the shallow and deep layers independently contribute to
the shapes of g1(r, τ), even though they share very close BFI values after the model fitting. The
detailed differences in the g1(r, τ) could have contributed to the excellent prediction accuracy of
the LSTM network in predicting both shallow and deep-layer flow rates, even from single-channel
DCS measurement.

Various deep-learning-based architectures such as CNN and RNN have been proposed to
predict the BFI [20–22], denoising autocorrelation function [20,39], and blood-flow-related
parameters [21,22,24]. We selected the LSTM network as it is the most feasible model for
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capturing the features of the time sequences of the input data. Furthermore, it has been
successfully implemented in the detection of BFI and other hemodynamic properties of tissues
[22,23]. Consequently, the LSTM network was capable of differentiating g2(r, τ) derived from
different combinations of shallow and deep flow rates. Although a direct comparison is difficult to
obtain based on differing experimental data and output parameters, the proposed LSTM network
outperformed the previously reported BFI detection accuracy predicted by other machine-learning
algorithms. Longer lengths of the input data and segmentation sizes and greater complexity in
the LSTM layer may have contributed to a superior prediction performance relative to a similar
LSTM-based model [22].

The errors in predicting flow rates were found to be negligible even when g2(r, τ)was measured
using a single source-detector separation. Interestingly, incorporating the simultaneously
measured g2(r, τ) data from various source-detector separations resulted in slightly worse
prediction accuracies in most cases. These results are further supported by the fact that g2(r, τ)
contains the flow rate information of the shallow and deep layers at different ratios depending on
the source-detector separation. Although the difference in the prediction accuracy is small, an
independent classifier that solely considers g2(r, τ) data obtained from a fixed source-detector
separation may perform better than that which receives g2(r, τ) data from multiple source-
detector separations, which requires learning the different contributions of autocorrelation
function morphologies associated with each separation dataset. However, an exception was
found in the shallow-layer flow rate, where combining multiple g2(r, τ) data relative to the
single g2(r, τ) data at a source-detector separation of 3 cm resulted in improved prediction
accuracy. This suggests that the g2(r, τ) data obtained at long source-detector separations are
less sensitive to shallow-layer flow rates, and that the addition of g2(r, τ) data obtained from
multiple source-detector separations compensates for this lack of sensitivity.

There are several limitations to consider when interpreting the results of this study. First,
the practical accuracy of the proposed method in differentiating cutaneous and muscle blood
flow needs to be further tested using a more realistic phantom that models the DCS particle
displacement as diffusion of a dense colloidal fluid [43,44] and in vivo experiments with
controlled cutaneous blood flow [10,11]. We observed that the decay rates of the autocorrelation
function were not in accordance with the flow velocity order in some of the faster flow settings
within the deep layer. This may indicate potential flow rate heterogeneity due to the structure
of the phantom. Second, the analytical BFI values were derived with a simple homogeneous
semi-infinite plate medium model. While a multi-layer analytical correlation diffusion model has
been increasingly used in DCS simulations and static phantom studies for inhomogeneous tissues
[16–19,37], we found that optimization of the current flow phantom data to this analytical model
consistently converged to a small BFI value (approximately 1.2× 10−9 cm2/s), particularly in
the deep layer (data not shown). This observation suggests that subtle differences in the decay
characteristics of the autocorrelation functions between the analytical and experimental data
may lead to estimation errors, as has been reported for in vivo measurement data [16]. This
highlights the need for further validation of this method using more realistic phantom models
or in vivo studies. Additionally, the current LSTM network can only be applied to biological
tissues with similar anatomical structures and optical properties. Although our Monte Carlo
based simulations suggest robustness to small changes in the optical or anatomical parameters of
the target tissue, a comprehensive exploration of prediction errors for all combinations of flow
rates has not been conducted. Therefore, the prediction results should be interpreted with caution.
Future studies could explore optimal parameters in Monte Carlo simulations to replicate the
autocorrelation functions obtained with the real flow phantom settings. If the simulated dataset
could be used to train the predictor of biological tissue measurements, a personalized LSTM
model could be developed to provide more precise cutaneous and muscle blood flow estimations.
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5. Conclusion

This study investigated the effects of flow rate changes on the morphology of autocorrelation
functions and the derived BFI values in a two-layer flow phantom. We investigated the potential
of using machine-learning techniques to predict the flow rates of shallow and deep tissue
layers. Our findings indicated that the changes in the shallow- and deep-layer flow rates and
the source-detector separation have varied impacts on the slopes of autocorrelation functions
and BFI values. The linear relationship between the flow rates and BFI values suggests that
model-fit-based BFI detection may suffer from misinterpreting changes in cutaneous and muscle
blood flow. Finally, our machine learning approach showed promising results in detecting the
different contributions of shallow- and deep-layer flow rates considering the autocorrelation
function used to predict both of these flow rates. Overall, our study highlights the potential
of combining DCS measurements with machine learning techniques to improve blood flow
estimation in applications such as active muscle measurements.
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